CXCR7 Receptor Controls the Maintenance of Subpial Positioning of Cajal-Retzius Cells.

نویسندگان

  • Françoise Trousse
  • Sylvie Poluch
  • Alessandra Pierani
  • Annie Dutriaux
  • Hans H Bock
  • Takashi Nagasawa
  • Jean-Michel Verdier
  • Mireille Rossel
چکیده

Cajal-Retzius (CR) cells are essential for cortical development and lamination. These pioneer neurons arise from distinct progenitor sources, including the cortical hem and the ventral pallium at pallium-subpallium boundary (PSB). CXCR4, the canonical receptor for the chemokine CXCL12, controls the superficial location of hem-derived CR cells. However, recent studies showed that CXCR7, a second CXCL12 receptor, is also expressed in CR cells at early developmental stages. We thus investigated the role of CXCR7 during CR cell development using multiple loss-of-function approaches. Cxcr7 gene inactivation led to aberrant localization of Reelin-positive cells within the pallium. In addition, Cxcr7(-/-) mice were characterized by significant accumulation of ectopic CR cells in the lateral part of the dorsal pallium compared with Cxcr4 knockout mice. Loss-of-function approaches, using either gene targeting or pharmacological receptor inhibition, reveal that CXCR7 and CXCR4 act both in CR positioning. Finally, conditional Cxcr7 deletion in cells derived from Dbx1-expressing progenitors indicates an essential role of CXCR7 in controlling the positioning of a subpopulation of PSB-derived CR cells. Our data demonstrate that CXCR7 has a role in the positioning of hem and PSB-derived CR cells, CXCL12 regulating CR cell subpial localization through the combined action of CXCR4 and CXCR7.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of calcium-binding proteins in layer 1 reelin-immunoreactive cells during rat and mouse neocortical development.

Cajal-Retzius cells in layer 1 of the developing cerebral cortex and their product of secretion, reelin, an extracellular matrix protein, play a crucial role in establishing the correct lamination pattern in this tissue. As many studies into reelin signaling routes and pathological alterations are conducted in murine models, we used double-labeling and confocal microscopy to compare the distrib...

متن کامل

Novel GABAergic circuits mediating excitation/inhibition of Cajal-Retzius cells in the developing hippocampus.

Cajal-Retzius cells are a class of neurons believed to play critical roles during cortical development. However, their network computational functions remain poorly understood. Although work in the neocortex and hippocampus has shown that Cajal-Retzius cells receive predominantly, if not exclusively, spontaneous GABA(A) receptor-mediated input, the cellular sources originating these events rema...

متن کامل

Depolarizing glycine responses in Cajal-Retzius cells of neonatal rat cerebral cortex.

We investigated the properties of glycine-induced responses in Cajal-Retzius cells, a neuronal cell type essential for the establishment of neocortical lamination. Whole-cell and gramicidin-perforated patch-clamp recordings were performed on visually identified Cajal-Retzius cells in tangential slices from neonatal rat cortex (postnatal days 0-3). With a pipette Cl(-) concentration of 50 mM, ba...

متن کامل

Characterization of hippocampal Cajal-Retzius cells during development in a mouse model of Alzheimer's disease (Tg2576)

Cajal-Retzius cells are reelin-secreting neurons in the marginal zone of the neocortex and hippocampus. The aim of this study was to investigate Cajal-Retzius cells in Alzheimer's disease pathology. Results revealed that the number of Cajal-Retzius cells markedly reduced with age in both wild type and in mice over-expressing the Swedish double mutant form of amyloid precursor protein 695 (trans...

متن کامل

Optogenetic activation of cajal-retzius cells reveals their glutamatergic output and a novel feedforward circuit in the developing mouse hippocampus.

Cajal-Retzius cells orchestrate the development of cortical circuits by secreting the glycoprotein reelin. However, their computational functions are still unknown. In fact, the nature of their postsynaptic targets, major neurotransmitter released, as well as the class of postsynaptic receptors activated by their firing remain unclear. Here, we have addressed these questions by activating Cajal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 25 10  شماره 

صفحات  -

تاریخ انتشار 2015